РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

cos x = a, sin x = a, tg x = a, ctg x = a.

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Таблица 1

Объяснение и обоснование

  1. Корни уравнения cos x = a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a < -1 не пересекает график функции y = cos x).

Пусть | a | ≤ 1. Тогда прямая y = a пересекает график функции y = cos x (рис. из пункта 1 табл. 1). На промежутке [0; π] функция y = cos x убывает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = a имеет на этом промежутке только один корень, который по определению арккосинуса равен: x1 = arccos a (и для этого корня cos x = a).

Косинус – четная функция, поэтому на промежутке [-π; 0] уравнение cos x = a также имеет только один корень – число, противоположное x1, то есть                x2 = - arccos a.

Таким образом, на промежутке [-π; π] (длиной 2π) уравнение cos x = a при |a| ≤ 1 имеет только корни x = ±arccos a.

Функция y = cos x периодическая с периодом 2π, поэтому все остальные корни отличаются от найденных на n (n ∈  Z). Получаем следующую формулу корней уравнения cos x = a при |a| ≤ 1:

x = ±arccos a + 2πn, n ∈  Z         (1)

  1. Частые случаи решения уравнения cos x = a.

Полезно помнить специальные записи корней уравнения cos x = a при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка А или точка В (рис. из пункта 2 табл. 1). Тогда

Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка С, следовательно, x = 2πk, k ∈  Z.

Также cos x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, x = п + 2πk, k ∈  Z

Примеры решения задач

19.2. Уравнение sin x = a

Таблица 2

Объяснение и обоснование

1.Корни уравнения sin x = a.

При |a| > 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a < -1 не пересекает график функции y = sin x).

Рисунок 1

Пусть |a| ≤ 1. Тогда прямая y = a пересекает график функции y = sin x (рис. 1). На промежутке  функция y = sin x возрастает от -1 до 1. Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение sin x = a имеет на этом промежутке только один корень, который по определению арксинуса равен: x1 = arcsin a (и для этого корня sin x = a).

На промежутке  функция y = sin x убывает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение sin x = a имеет на этом промежутке только один корень x2 = π - arcsin a (рис. 1). Для проверки правильности записи значения второго корня x2 заметим, что x2 = π - x1, тогда sin x2 = sin (π- x1) = sin x1 = a. То есть x2 – корень уравнения sin x = a.

Таким образом на промежутке   (длиной 2π) уравнение sin x = a при |a| ≤ 1 имеет только корни x1 = arcsin a, x2 = π - arcsin a.

Функция y = sin x периодическая с периодом 2π, поэтому все остальные корни отличаются от найденных k (k Z). Получаем следующие формулы корней уравнения sin x = a при |a| ≤ 1:

x=arcsin a + 2πk, k ∈  Z.            (1)

x= π - arcsin a + 2πk, k ∈  Z.      (2)

Все значения корней уравнения sin x = a при |a| ≤ 1, которые дают формулы (1) и (2), можно записать с помощью одной формулы

x=(-1)n arcsin a + 2πn, n ∈  Z      (3)

Действительно, из формулы (3) при четном n = 2k получаем x = arcsin a + 2πk – формулу (1), а при нечетном n = 2k +1 – формулу x= - arcsin a + π(2k+1)= π - arcsin a + 2πk, то есть формулу (2).

2.Частые случаи решения уравнения sin x = a.

Рисунок 2

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

 

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке  функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈  Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈  Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈  Z). Получаем следующую формулу корней уравнения ctg x = a:

При a = 0

 

таким образом, уравнение ctg x = 0 имеет корни

 

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)