Алгебраические неравенства. Подготовка к ЕГЭ.
Универсальный метод решения алгебраических неравенств заключается в приведении их с помощью равносильных преобразований к системам или совокупностям легко решаемых рациональных неравенств или уравнений. Этот метод школьники осваивают, начиная с 9-го класса. В 10 – 11 классах средней школы, рассматривая кроме алгебраических еще тригонометрические, показательные и логарифмические уравнения и неравенства, как правило, с помощью замен или других рассуждений удается решение свести к исследованию равносильных систем или совокупностей простейших уравнений и неравенств.
Понятия неравенства с переменной и его решений
Если два выражения с переменной соединить одним из знаков >, <, <, то получаем неравенство с переменной.
Аналогично уравнению, неравенство с переменной (например, со знаком >) чаще всего понимают как аналитическую запись задачи о нахождении тех значений аргументов, при которых значение одной из заданных функций больше, чем значение другой заданной функции. Поэтому в общем виде неравенство с одной переменной х (например, для случаев «больше») записывают так: f(x)>g (*).
Напомним, что решением неравенства называется значение переменной, которое обращает это неравенство в верное числовое неравенство.
Решить неравенство — значит найти все его решения (и обосновать, что других решений нет) или доказать, что решений нет.
Например, решениями неравенства Зх < 6 являются все значения х < 2, для неравенства х2 > -1 решениями являются все действительные числа (R), а неравенство х2 <-1 не имеет решений, поскольку значение х2 не может быть отрицательным числом.
Область допустимых значений (ОДЗ)
Область допустимых значений (ОДЗ) неравенства определяется аналогично ОДЗ уравнения. Если задано неравенство f (х) > g(x), то общая область определения функций f(x) и g(x) называется областью допустимых значений этого неравенства (иногда используются также термины «область определения неравенства* или «множество допустимых значений неравенства*).
Например, для неравенства х2 < х областью допустимых значений являются все действительные числа (это можно записать, например, так: ОДЗ: R), поскольку функции f(x) = х2 и g(x) = х имеют области определения R.
Понятно, что каждое решение заданного неравенства входит как в область определения функции f(x), так и в область определения функции g(x) (иначе мы не сможем получить верное числовое неравенство). Таким образом, каждое решение неравенства обязательно входит в ОДЗ этого неравенства. Это позволяет в некоторых случаях применить анализ ОДЗ неравенства для его решения.
Равносильные неравенства
С понятием равносильности неравенств вы знакомы еще из курса алгебры 9 класса. Как и для случая равносильных уравнений, равносильность неравенств мы будем рассматривать на определенном множестве.
Два неравенства называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же решения, то есть каждое решение первого неравенства является решением второго и, наоборот, каждое решение второго неравенства является решением первого.
Договоримся, что в дальнейшем все равносильные преобразования неравенств будем выполнять на ОДЗ заданного неравенства. Укажем, что в том случае, когда ОДЗ заданного неравенства является множество всех действительных чисел, мы не всегда будем его записывать (как не записывали ОДЗ при решении линейных или квадратных неравенств). И в других случаях главное — не записать ОДЗ при решении неравенства, а действительно учесть ее при выполнении равносильных преобразований заданного неравенства.
Общие ориентиры выполнения равносильных преобразований неравенств аналогичны соответствующим ориентирам выполнения равносильных преобразований уравнений.
Как указывалось выше, выполняя равносильные преобразования неравенств, необходимо учитывать ОДЗ заданного неравенства — это и есть первый ориентир для выполнения равносильных преобразований неравенств.
По определению равносильности неравенств необходимо обеспечить, чтобы каждое решение первого неравенства было решением второго, и наоборот, каждое решение второго неравенства было решением первого. Для этого достаточно обеспечить сохранение верного неравенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях. Это и есть второй ориентир для решения неравенств с помощью равносильных преобразований. Действительно, каждое решение неравенства обращает его в верное числовое неравенство, и если верное неравенство сохраняется, то решение каждого из неравенств будет также и решением другого, таким образом, неравенства будут равносильны.
Например, чтобы решить с помощью равносильных преобразований неравенство
достаточно учесть его ОДЗ: х + 1 не не равно 0 и условие положительности дроби (дробь будет положительной тогда и только тогда, когда числитель и знаменатель дроби имеют одинаковые знаки), а также учесть, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлении с сохранением верного неравенства.
Кроме выделенных общих ориентиров, для выполнения равносильных преобразований неравенств можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности неравенств обобщим также формулировки простейших теорем о равносильности неравенств, известных из курса алгебры 9 класса.
1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве).
2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не изменяя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного).
3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства) и изменить знак неравенства на противоположный, то получим неравенство, равносильное заданному (на ОДЗ заданного).
Обоснование этих теорем проводится с использованием основных свойств числовых неравенств и полностью аналогично обоснованию ориентиров для равносильных преобразований заданного неравенства.
Замечание. Для обозначения перехода от заданного неравенства к неравенству, равносильному ему, можно применять специальный значок <=>, но его использование при оформлении решений не является обязательным.