Формула знаний

          Сложение, вычитание, умножение, деление - арифметические действия (или арифметические операции). Этим арифметическим действиям соответствуют знаки арифметических действий:

+ (читаем "плюс")      -     знак операции сложения,

- (читаем "минус")      -   знак операции вычитания,

(читаем "умножить") -  знак операции умножения,

: (читаем "разделить")    -  знак операции деления.

          Запись, состоящая из чисел, связанных между собой знаками арифметических действий, называется числовым выражением. В числовом выражении могут присутствовать также скобки. Например, запись 1290 : 2 – (3 + 20 ∙ 15) является числовым выражением.

          Результат выполнения действий над числами в числовом выражении называется значением числового выражения. Выполнение этих действий называется вычислением значения числового выражения. Перед записью значения числового выражения ставят знак равенства «=». В таблице 1 приведены примеры числовых выражений и их значений.

Таблица 1


          Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий называется буквенным выражением. В этой записи могут присутствовать скобки.  Например, запись a + b –  3 ∙ c является буквенным выражением. Вместо букв  в буквенное выражение можно подставлять различные числа. При этом значение букв может изменяться, поэтому буквы в буквенном выражении называют еще переменными

          Подставив в буквенное выражение числа  вместо букв   и  вычислив значение получившегося числового выражения, находят значение буквенного выражения при данных значениях букв (при данных значениях переменных). В таблице 2 приведены примеры буквенных выражений.

          Буквенное выражение может не иметь значения,  если при подстановке   значений букв получается  числовое выражение, значение которого для натуральных чисел не может быть найдено.  Такое числовое выражение называется некорректным для натуральных чисел. Говорят также, что значение такого выражения «не определено» для натуральных чисел, а само выражение «не имеет смысла». Например, буквенное выражение a –  b  не имеет значения  при a = 10 и b = 17. Действительно, для натуральных чисел, уменьшаемое не может быть меньше вычитаемого. Например, имея  всего 10 яблок (a = 10),  нельзя отдать из них 17          (b = 17)!  В таблице 2 (колонка 2) приведён пример буквенного выражения. По аналогии заполните таблицу полностью.

Таблица 2

 


          Для натуральных чисел выражение 10 -17 некорректно (не имеет смысла), т.е. разность 10 -17 не может быть выражена натуральным числом. Другой пример: на ноль делить нельзя, поэтому для  любого натурального  числа b, частное b : 0 не определено. 

          Математические законы, свойства, некоторые правила и соотношения часто записывают в буквенном виде (т.е. в виде буквенного выражения). В этих случаях буквенное выражение называют формулой. Например, если стороны семиугольника равны  a, b, c, d, e, f, g,  то формула (буквенное выражение) для вычисления его периметра p имеет вид:                           
 

p = a + b + c + d + e + f + g

          При  a = 1, b = 2, c = 4, d = 5, e = 5, f = 7, g = 9, периметр семиугольника p = a + b + c + d + e + f + g = 1 + 2 + 4 + 5 +5 + 7 + 9 = 33.

          При  a = 12, b = 5, c = 20, d = 35, e = 4, f = 40, g = 18, периметр другого семиугольника  p = a + b + c + d + e + f + g =12 + 5 + 20 + 35 + 4 + 40 + 18= 134.