Иногда приходится решать тригонометрические уравнения, в которые входят только сумма или разность синуса и косинуса одного и того же аргумента и их произведение. В таком случае целесообразно эту сумму (или разность) обозначить новой переменной.

Задача 1. Решите уравнение 3 (sin x + cos x) = 2 sin 2х.

Комментарий

Если в заданном уравнении привести все тригонометрические функции к одному аргументу х, то получим уравнение (1) (см. решение), в которое входят только сумма синуса и косинуса одного и того же аргумента х и их произведение. Для решения этого уравнения введем новую переменную sin x + cos x = y. Чтобы получить произведение sin x cos x, достаточно возвести в квадрат обе части равенства замены и учесть, что sin2 x + cos2 x = 1. Выполняя обратную замену, удобно также учесть, что

Решение

   Данное уравнение равносильно уравнению

                                  3 (sin x + cos x) = 4 sin х cos x.                                     (1)

Если обозначить sin x + cos x = у, то

Тогда  Подставляя эти значения в уравнение (1), получаем

Таким образом, sin x + cos x = 2 или sin x+cos x =

Тогда  или  Получаем  (корней нет, поскольку ) или  Отсюда  Тогда

Ответ:

   З а м е ч а н и е. При возведении обеих частей уравнения в квадрат можно получить посторонние корни (см. таблицу 7). Но возведение обеих частей равенства замены в квадрат является равносильным преобразованием. Действительно, в этом случае левая и правая части равенства имеют одинаковые знаки, и тогда a = b Если обе части равенства a = b положительны, то для положительных значений t функция y =возрастает и поэтому каждое свое значение принимает только при одном значении аргумента. Таким образом, при a > 0, b > 0 из равенства a = b следует равенство и, наоборот, из равенства следует равенство a = b, что и гарантирует равносильность выполненного преобразования для положительных a и b. Аналогично для  используем то, что для не положительных значений t функция y =убывает и поэтому каждое свое значение принимает только при одном значении аргумента.

   Для решения некоторых тригонометрических уравнений могут применяться свойства функций (соответствующие общие подходы к решению были рассмотрены в § 3, пункт 3.2), в частности, оценка левой и правой частей уравнения.

Задача 2. Решите уравнение 

         Оценим область значений функции 

         Поскольку  то есть 

         Выясним, существуют ли такие значения х, при которых функция f (x) может принимать наибольшее значение 2. Если cos 6x будет меньше 1, то для того чтобы сумма равнялась 2, необходимо, чтобы значение было больше 1, что невозможно. Аналогично, если допустить, что меньше 1, то для того чтобы сумма равнялась 2, необходимо, чтобы значение cos 6x было больше 1, что невозможно. Таким образом, равенство в данном уравнении возможно тогда и только тогда, когда cos 6x и равны 1. Поэтому данное уравнение равносильно системе

         Приравнивая правые части этих равенств, получаем

         Поскольку k и n — целые числа, то для получения всех решений последнего уравнения в целых числах (см. § 9) достаточно подставить в правую часть последнего равенства вместо п все остатки при делении на 5 и найти, для каких значений п по этой формуле k также будет целым числом. Только при n = 1 получаем целое k = 3. В случае, когда коэффициент 12 при переменной n в числителе дроби и знаменатель 5 — взаимно простые числа, повторение делимости нацело будет только через знаменатель, то есть через 5. Поэтому последнее уравнение имеет решения в целых числах только вида n = 1 + 5m,. Подставляя значение п в одно из решений системы, получаем х = π + 4πm. Эти значения и являются решениями последней системы, а следовательно, и решениями данного уравнения.

Ответ: х = π + 4πm,.

Задача 3. Решите уравнение 

Комментарий

         Преобразуем левую часть по формуле  и оценим область значений функций, стоящих в левой и правой частях уравнения. Решая полученную систему двух уравнений с одним неизвестным, можно несколько упростить выкладки и решить только одно уравнение системы, а для другого проверить, удовлетворяют ли ему полученные решения.

Решение

         Данное уравнение равносильно уравнению

(1)

        

 

Обозначим: . Поскольку 

         Левая часть уравнения (1) меньше или равна 2, а правая часть больше или равна 2. Равенство между ними возможно тогда и только тогда, когда левая и правая части уравнения равны 2, то есть данное уравнение равносильно системе

         Из первого уравнения системы имеем , откуда 

         Проверим, удовлетворяют ли найденные значения второму уравнению системы. Если , тогда sin 8x=0 и поэтому 

Ответ:

   Иногда для решения тригонометрических уравнений приходится применять тригонометрические формулы, которые приводят к сужению ОДЗ данного уравнения. Такие преобразования могут приводить к потере корней уравнения. Чтобы этого не случилось, можно пользоваться таким о р и е н т и р о м:

если для решения уравнений (или неравенств) приходится выполнять преобразования, сужающие ОДЗ исходного уравнения (или неравенства), то те значения, на которые сужается ОДЗ, необходимо рассматривать отдельно.

   В таблице 42 указаны тригонометрические формулы, которые могут приводить к сужению ОДЗ, и соответствующие значения переменной, которые приходится проверять при использовании этих формул.

Чтобы убедиться, что приведенные формулы приводят к сужению ОДЗ, достаточно сравнить области допустимых значений их левых и правых частей.

Например, рассмотрим формулу 

ОДЗ левой части: . Для нахождения ОДЗ правой части формулы учитываем, что знаменатель дроби не равен нулю:, таким образом, . То есть ОДЗ правой части задается системой ограничений  Сравнивая ОДЗ левой и правой частей рассмотренной формулы, видим, что ОДЗ правой части содержит дополнительное ограничение. Таким образом, при переходе по этой формуле от ее левой части к правой происходит сужение ОДЗ (отбрасываются именно те значения, которые указаны в таблице: Чтобы не потерять корни данного уравнения, при использовании формулы, значение , необходимо рассмотреть отдельно (конечно, только в том случае, когда оно входит в ОДЗ данного уравнения).

Приведем пример использования указанного о р и е н т и р а.

Задача 4. Решите уравнение

Комментарий

Если воспользоваться первыми двумя формулами таблицы 42, то мы приведем все тригонометрические выражения в этом уравнении и к одному аргументу, и к одной функции — tg x. Но при использовании указанных формул происходит сужение ОДЗ на значение ,  и вследствие этого можно потерять корни уравнения, если числа такого вида входят в ОДЗ исходного уравнения и являются его корнями. Чтобы этого не случилось, разобьем решение на две части.

  1. Подставляем те значения переменной, на которые сужается ОДЗ, в                уравнение (1). При вычислениях учитываем периодичность функций и формулы приведения.
  2. При (на ОДЗ уравнения (1)) использование формул и приводит к уравнению (2) (см. решение), которое равносильно заданному (на той части ОДЗ, где ), потому что эти формулы сохраняют верное равенство как при переходе от равенства (1) к равенству (2), так и при обратном переходе от равенства (2) к равенству (1). Замена переменной (и обратная замена) также приводит к уравнению, равносильному заданному (на указанной части ОДЗ исходного уравнения).

   Заметим, что ОДЗ уравнения (2) отличается от ОДЗ уравнения (1) только тем, что в нее не входят значения , которые входят в ОДЗ уравнения (1). Поскольку эти «плохие» значения мы учли в процессе решения, то ОДЗ уравнения (1) можно в явном виде не фиксировать (как в приведенном решении). В ответе записываем все корни, которые были получены в первой и второй частях решения.

Решение

  1. Если , то из данного уравнения получаем:

– верное равенство.

Таким образом, – корни уравнения (1).

  1. Если , получаем:

(2)

 

        Замена tg x = t приводит к уравнению  которое при  и  равносильно уравнению . Тогда 

Обратная замена даёт: tg x= -1 или , то есть:

   Некоторые тригонометрические уравнения удается решить, исполь­зуя такой ориентир, который условно можно назвать «ищи квадратный трехчлен», то есть:

попробуйте рассмотреть данное уравнение как квадратное относительно некоторой переменной (или относительно некоторой функции).